PLANTEAMIENTO

 

Se ilustra geométricamente cómo se comporta la derivada de la función secante.

 

 

DEFINICIÓN

 

La función secante es de la forma .

 

Posee las siguientes características:

 

·          El dominio de la función es:  

·          El rango de la función es:

·          Es periódica.

·          Posee un periodo de

·          Es discontinua.

 

Su gráfica es:

 

 

 

DERIVACIÓN DE LA FUNCIÓN SECANTE

 

Sea la función

 

Aplicando la identidad trigonométrica    se tiene:

 

 

Derivando la función como un cociente:

 

 

 

 

Así que:

 

 

Por lo tanto:

 

 

 

 

CONCLUSIÓN

 

La derivada de la función cotangente es igual al producto de la función secante por la función tangente.

 

 

PROPUESTA DE TRABAJO

 

1.     Mover el punto verde  y observar cómo se comporta la pendiente de la tangente de la función secante en color gris.

2.     Notar que la pendiente de la recta tangente es la ordenada de la función derivada cuya abscisa es la misma que la del punto .

3.     Comprobar esto activando la casilla que activa el trazo.

4.     La gráfica en rojo representa la función .

5.     Pulsar el icono que se sitúa arriba a la derecha para regresar a la construcción inicial.